1.0 Introduction

• The proposed system is aimed to continuously track moving object in random motion.
• Applications: robotic vision, security surveillance, traffic control and analysis of sports video.
• Some of the current tracking systems are less robust as focused in tracking object in predefined trajectory.
• An algorithm to track the random motion object is necessary.
• Multiple hypotheses property in particle filter enhanced with gradient optimization property of mean shift to estimate the target moving direction.
2.0 Objective

• To continuously track a random motion object under varying video conditions using the hybrid of particle filtering algorithm with mean shift approach.

• Capable to track object more efficient compared to particle filter tracker and mean shift tracker alone.
3.0 Methodology

- Particle Filter Framework

Samples from previous frame

Prediction with state transition model

Predicted samples

Update with current observation model

Observation Weightings

Updated Samples
3.0 Methodology

• Mean Shift applied in Particle Filter
 • The direction of the movement for each particle is given by gradient optimization of the kernel masking.

• The new resulting particle set represents the modes of the distribution, results in fewer particles are needed to maintain the multi-modal distribution.
4.0 Results and Discussions

TRACKING RESULT ON ABRUPT DIRECTION AND VELOCITY CHANGING TARGET

Frame 104

Frame 117

Frame 126

Frame 130
4.0 Results and Discussions

EFFECT OF MEAN SHIFT ON PARTICLE SAMPLING

• After mean shift is applied to each particle, these particles move to the more likely position and concentrated in the local mode due to the gradient optimization property.

• PF tracker alone can only achieve sufficiently high coefficient when the number of particles is around 150, as compared to the MS embedded PF tracker where its sample size is only 20.
4.0 Results and Discussions

Complete Occlusion

Mean shift embedded particle filter tracker

Mean shift tracker
4.0 Results and Discussion

Occlusion Detection and Recovery Process

- The uniform distribution covers larger search area around to predict the location of the target when it reappears again.
4.0 Results and Discussions

Like-Colored Background

Frame 303
Frame 305
Frame 303
Frame 305

Frame 308
Frame 310
Frame 308
Frame 310

The tracking result of MS embedded PF tracker without edge feature
The tracking result of MS embedded PF tracker with edge feature
5.0 Conclusion

• Enhancement of particle filter sampling by mean shift algorithm.

• The developed tracker is capable to track abrupt direction and velocity changing object.

• The ability of maintaining multiple hypotheses on PF combined with the gradient optimization property of MS enable the tracker to deal with occlusion and clutter situations.