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Abstract Industrial fed-batch yeast fermentation process is a typical nonlinear
dynamic process that requires good control technique and monitoring to optimize
the yeast production. This chapter explores the applicability of Q-learning in
determining the feed flow rate in a fed-batch yeast fermentation process to achieve
multiobjectives optimization. However, to develop such control system, the
complex nature of the yeast metabolism that will affect the system stability has to
be considered. Q-learning is well known for its interactive properties with the
process environment and is suitable for the learning of system dynamic. Therefore,
the utilization and performance of Q-learning to seek for the optimal gain for the
controller is studied in this chapter. Meanwhile, the performance of Q-learning
under the process disturbance is also tested.

Introduction

The fed-batch application in industrial bioprocess is mainly for the substrate
feeding control. A good control on substrate inflow to the bioreactor system is able
to avoid serious overflow metabolism and increase the cell productivity
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(Sonnleitner and Henes 2007). The overflow metabolite, i.e., alcohol in yeast
fermentation, if highly concentrated, would be toxic and therefore suppress the cell
growth. For a fed-batch fermentation process in which product concentration
precision is highly required, a normal three-mode controller is bound by the
sensors problem to maintain the control action (Smets et al. 2002).

In recent years, the research focus on artificial intelligence in fermentation
optimization has brought about breakthroughs in classic control methods. For
example, differential evolution technique (Yüzgeç 2010; Kapadi and Gudi 2004)
has been applied for the stochastic search of product optimization. This approach
requires the knowledge of effective optimal range in order to minimize the com-
putation time and avoid trap in local optimization. Neural-network-based model
training for model predictive control has faced challenges in training and mapping
the large number of data until small-error model of satisfactory can be obtained
(Ławryńczuk 2011).

The Q-learning algorithm, well known for its explorative and interactive
properties with the process environment, is a worth-trying alternative to handle the
optimization of the dynamic fermentation. In this chapter, the applicability and the
development of Q-learning to adapt the controller gain in a fed-batch yeast fer-
mentation is of the major interest for the multiobjectives optimization. The
robustness of Q-learning-based controller under the influence of disturbance will
also be discussed in this chapter, in comparison with nominal exponential feeding
(Chuo et al. 2011; Teo et al. 2010) and scheduled-gain proportional control under
the same process basis.

Dynamic Metabolism of Baker’s Yeast Fermentation

The dynamic in the yeast fermentation process is represented by the summarized
and re-arranged material balances using the parameters in Yüzgeç (2010):

dCs ¼
F

V
S0 � CSð Þ

� CX 1:08547QS � 0:08547QS;OX þ QM þ 1:228457QE;OX þ QM

� �
ð1Þ

dCX ¼ �
F

V
CX þ CX 0:05QS þ 0:535QS;OX þ 0:7187QE;OX

� �
ð2Þ

dCE ¼ �
F

V
CE þ CX 0:4859 QS � QS;OX

� �
þ QE;OX

� �
ð3Þ

dCO ¼ �
F

V
CO þ CX 0:3857QS;OX þ 0:8896QE;OX

� �
þ kLa C�O � CO

� �
ð4Þ

dV ¼ F ð5Þ
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where dCS, dCX, dCE, dCO, and dV denote the change of concentration of sub-
strate, yeast, ethanol, oxygen, and bioreactor volume, respectively. Assume
Monod growth kinetics, the substrate consumption rate, QS, can go through either
oxidative, QS,OX or fermentative, QS,RED consumption. The rate of oxidation of
substrate in the cell, QS,OX, is determined by the smallest rates at which glucose
and oxygen are taken up by the cells. On the other hand, the rate of oxidation of
ethanol, QE,OX, in cell is determined by the smallest of the rates at which ethanol
and limited oxygen are taken up by the cells. Specific growth rate, l, and respi-
ratory quotient, RQ, expressed in terms of QS, QS,OX, and QE,OX are shown as
below.

QS ¼ 2:943
CS

0:612þ CS
1� e�

t
2

� �
ð6Þ

QO;lim ¼ 0:255
CO

9:6� 10�5 þ CO

3:5
3:5þ Ce

ð7Þ

QE;UP ¼ 0:238
Ce

0:1þ Ce

3:5
3:5þ CS

ð8Þ

QS;OX ¼ min
CS

0:359
QO;lim=0:3857

0

@

1

A ð9Þ

QE;OX ¼ min
Qe;up

1:1236QO;lim � 0:4334QS;OX

� 	
ð10Þ

l ¼ 0:05QS þ 0:535QS;OX þ 0:7187Qe;OX ð11Þ

RQ ¼ 0:1124QS;OX þ 0:462QS þ 0:645Qe;OX

0:3857QS;OX þ 0:8896Qe;OX

ð12Þ

Methodology

In a Q-learning algorithm, a learning agent actively interacts with the dynamic
environment. The agent decides the best action that causes transition of state to the
environment and the latter responds in a new state to the agent. A desirable action
is taken based on the reward function which specifies the overall objective of the
learning. A reward function assigns rewards or penalties depending on the
incorporated preference indices that tell the agent the best way to achieve the goal
(Syafiie et al. 2008). The difficulty of designing the reward function by putting it in
the shoe of different dynamic situation lies in the determination of these preference
indices and the effective range.
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Multistep Action Q-Learning

Multistep action (MSA) Q-learning (Schoknecht and Riedmiller 2003) considers
the inborn delay nature of the fermentation system to react to the substrate feeding.
In MSA, the algorithm will look into the effect (resulting rewards) after executing
a sequence of m number of actions.

In the proposed algorithm, constant action is executed throughout m number of
steps before the agent decides on the next action for the next round of multistep.
The execution of MSA, am, causes transitions to the environment, resulting in the
state, sm. The maximum Q-value comes from the execution of the best action,
ðamÞ0, determined by the reward function, rm, resulting in the maximum state,
ðSmÞ0. The Q-value is updated using the Q-learning function:

Qtþ1 sm; amð Þ  1� að ÞQt sm; amð Þ þ a rm þ cm max
an2A

Q ðsmÞ0; ðamÞ0
� �
 �

ð13Þ

where Qt (sm,am) is the Q-value for state-action at time t, a is the learning rate, and
c is the discount factor. The learning rate determines the importance of past
experience, and the discount factor weighs the importance of near term rewards
(Chuo et al. 2011).

Q-Learning-Based Controller

In this chapter, Q-learning (QL)-based controller is used to react to the gain, KP,
that multiplies the feedback error, Et, to the substrate feed flow rate, F, as shown in
Fig. 1.

The various states at time t and the calculated error, Et, are related to the
process gain, KP, by the agent using reward function, rm, and the Q-learning
function. The argument maximum Q-value determines the optimized KP used to
tune the magnitude of the error to determine the next feed flow rate, F, for the
m steps time.

PlantP Action 

Q-Table

Controller

ytut

Actionst+1

MaxUpdate
data

st Et

Q-learning Agent

CS ,CX,CE,CO ,V
RQ

RQset

Fig. 1 Q-learning-based control process flow diagram
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ut ¼ F0KpEt ð14Þ

Et ¼ RQset � RQ ð15Þ

The fermentation process was run for 10 h with a total number of 500 actions,
each for m steps time. The process step size is 0.001 h and m is 0.02 h or 72 s.
Within m steps, the amount of accumulated yeast (qx) and ethanol (qe) was stored.
The accumulated values instead of the final concentrations at m steps were taken
because the dynamicity of the system within a period should not be represented by
the final concentration alone. The difference of average specific growth rate at
m steps with the critical specific growth rate at 0.21 h-1 (ql) was also calculated
for reward calculation using the reward function:

rm ¼ b1qx � b2qe � b3ql ð16Þ

where b1, b2, and b3 indicates the weight of the preference index qx, qe, and ql,
respectively. In this case, b1 = 1, b2 = 100, and b3 = 10. More yeast production
will result in higher rm, and more ethanol production will result in lower rm.
Therefore, only actions with higher rewards will be chosen, which has represented
the multiobjectives optimization. The KP with the highest Q-value will be chosen
as the gain for the QL-based proportional controller at each m step.

Results and Discussion

For the nominal case, the initial concentration of glucose (Cs), yeast (Cx), ethanol
(Ce), and oxygen (Co) are 3.5, 9.0, 0, and 0.008 g/l, respectively. The substrate
feeding stream has a concentration of 325 g/l, initial volume of 50,000 l, and
initial feed flow rate 100 l/h. The following results showed the concentration
profiles of glucose, yeast (to be maximized), and ethanol (to be minimized) for (1)
nominal exponential feeding, F = 100e0.3t (Fig. 2a), (2) scheduled-proportional
control, with linear KP increment of 3 for each m steps, starting at initial KP = 0
(Fig. 2b), and (3) QL-based control (Fig. 2c and d).

Under optimum scheduled-proportional control, the final yeast and ethanol
concentrations are 32.91 g/l and negligible, respectively, more robust compare to
nominal exponential feeding of 28.21 and 0.0025 g/l, respectively. Under the same
initial conditions and using the range of gain, KP, suggested by trial-and-error
tuning scheduled-proportional controller, i.e., 0 B KP B 1,500, Q-learning-based
controller can adjust and seek for the optimal gain. Maximum final yeast con-
centration and minimum final ethanol concentration, i.e., 40.42 g/l and negligible,
respectively, are obtained for Q-learning-based control. On the other hand, dis-
turbance in substrate feeding concentration can happen in fermentation and
overfeeding of substrate tends to trigger the overflow metabolism. In this case, it is
introduced as substrate concentration change of 525 g/l at 1 \ t B 1.5 h. Sched-
uled-proportional controller is unable to control the increasing ethanol
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Fig. 2 Concentration profiles of glucose, yeast, and ethanol (left) and the substrate feeding
profile (right) for a nominal exponential feeding; b scheduled-proportional control; c Q-learning-
based control and d Q-learning-based control under disturbance of S0 = 525 g/l at 1 \ t B 1.5
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concentration in the case of disturbance. The final concentrations of yeast and
ethanol are 33.13 and 19.02 g/l, respectively, for scheduled-proportional control-
ler; 40.49 g/l, negligible, respectively, for Q-learning-based control, as shown in
Fig. 2d. Q-learning is able to adapt the process gain when necessary and achieve
its goal of maximizing yeast and minimizing ethanol even under the disturbance,
as shown in the feeding profile in Fig. 2d.

Conclusions

In this study, Q-learning has shown result of satisfactory in tuning the controller
gain to achieve multiobjectives optimization, compare to nominal exponential
feeding and scheduled-proportional controller. Meanwhile, Q-learning is able to
seek for optimal process gain that can reduce the disturbance effect in the substrate
feeding stream rather than increasing-gain scheduled-proportional controller.
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