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Abstract The aim of this chapter is to optimise the productivity of an exothermic
batch process, by maximising the production of the desired product while
minimising the undesired by-product. During the process, heat is liberated when
the reactants are mixed together. The exothermic behaviour causes the reaction to
become unstable and consequently poses safety issues. In the industries, a dual-
mode controller is used to control the process temperature according to a prede-
termined optimal reference temperature profile. However, the predetermined
optimal reference profile is not able to limit the production of the undesired by-
product. Hence, this work proposed a genetic-algorithm-based controller to opti-
mise the batch productivity without referring to any optimal reference profile.
From the simulation results, the proposed algorithm is able to improve the
production of the desired product and reduce the production of the undesired
by-product by 15.3 and 34.4 %, respectively. As a conclusion, the genetic-algo-
rithm-based optimisation performs better in raw materials utilisation as compared
to the predetermined optimal temperature profile method.

Introduction

Batch process has been applied in the manufacturing industry due to its flexibility
to handle various productions of high value-added product, such as specialty
chemicals, agrochemicals, and pharmaceuticals. Although batch process is used
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for various types of production, quite often the common aim is to optimise the
production of the desired product while at the same time minimising the waste.
Since there is no inflow and outflow during the process, the raw materials utility is
fully relied on the reactor temperature especially for the exothermic reaction
(Nisenfeld 1996). In exothermic reactions, heat is liberated during the process
hence consequently increases the reactor temperature. If the liberated heat is
higher than the plant cooling capacity, the reaction will become unstable and,
hence, poses a safety issue to the plant personnel (Hazard Investigation 2002).

Previously, batch productivity optimisation for exothermic process was
obtained by controlling the reactor temperature according to a predetermined
optimal temperature profile (Mujtaba et al. 2006; Sujatha and Pappa 2012; Tan
et al. 2011). Although they can control the reactor temperature to follow the
desired trajectory effectively, the aim of minimising the waste may not be
achieved. Besides, the global price competition and escalating raw materials costs
have also urged the batch industries to consider an effective way of utilising the
raw materials (Fernandez et al. 2012).

For these reasons, genetic algorithm (GA) is introduced to optimise the exo-
thermic batch productivity. This work reports the performance of a GA in exo-
thermic batch process optimisation without referring to any reference values. The
performance of the proposed GA is then compared with the conventional dual-
mode controller (DM) which uses the predetermined optimal temperature profile.

Methodology

Batch Process Modelling

A benchmark batch process model, developed by Cott and Macchietto (1989), is
used in this study. It is assumed that a two-parallel, well-mixed, and irreversible
liquid-phase exothermic reactions occur in the process, as shown in below.

Reaction 1 : A þ B! C Reaction 2 : A þ C! D

where A and B are the raw materials, C is the desired product, and D is the
undesired by-product. Initially, all the raw materials are charged into the reactor
and left to react for 120 min. The jacket surrounding the reactor is used to control
the reactor temperature. Figure 1 illustrates the schematic of the batch process
system.

The dynamic modelling of a batch process can be divided into two parts:
component balance and energy balance. The law of conservation of mass is
applied to model the component balance of the reactor contents. The production/
consumption rate of all substances and each component balance are described in
(1) and (2), respectively.
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where Ri is the reaction rate of Reaction i, ki is the reaction rate constant of
Reaction i, Mj is the molar concentration of substance n, and _Mnis the changing
rate of substance n.

Since both the reactions are temperature dependence, the reaction rate constant
for both reactions can be modelled using Arrhenius equation, as shown in (3).

ki ¼ koi exp
�Eai

R � Tr

� �
; where i ¼ 1; 2 ð3Þ

where koi is the frequency factor of Reaction i, Eai is the activation energy of
Reaction i, R is the gas constant, Tr is the reactor temperature in unit Kelvin.

On the other hand, the energy balance of the reactor and jacket are shown in
Eqs. (4) and (5), respectively.

dTr

dt
¼

Qexo þ Qj

� �
MrCqr

ð4Þ

Fig. 1 Schematic of batch process system
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where Qexo and Qj are the exothermic heat released and heat transferred from
jacket to reactor, respectively, Mr is total molar concentration of reactor contents,
Cqr is the heat capacity of reactor contents, Tj and Tc are the jacket and fluid
temperature, respectively, Fj is the fluid flow rate, qj is the fluid density, Cqj is the
heat capacity of the fluid, and Vj is the volume of the jacket.

Qexo and Qj can be defined as shown in (6) and (7), respectively. Here, the
initial temperature for Tr and Tj are assumed to be 25 �C.

Qexo ¼ R �DHiRið Þ;where i ¼ 1; 2 ð6Þ

Qj ¼ UAr Tj � Tr

� �
ð7Þ

where DHi is the enthalpy change of Reaction s, U is the heat transfer coefficient
between the jacket and reactor, Ar is the surface area of reactor conducts with the
jacket.

Other important physical variables of the process are described in (8) and (9),
respectively, where n = A, B, C, D. The plant parameters can be taken from Tan
et al. (2011).

Mr ¼ RMn ð8Þ

Cpr ¼
R Cqn �Mn

� �
Mr

ð9Þ

where Cqn is the heat capacity of substance n.

Genetic Algorithm Modelling

The GA proposed for the optimisation is based on the biological evolution theory
and Darwin’s natural selection concept: ‘‘survival of the fittest’’. In this case, it is
used to manipulate the jacket inlet fluid temperature, Tc, with a sampling time of
60 s. First, the real number chromosome representation technique is applied to
represent the potential solutions (fluid temperature). After a few trials, results
showed that a population size of 50 is enough in this work. The manipulated
variables are bounded in the range of 0–120 �C.

Each chromosome is then evaluated by a fitness function in order to distinguish
their suitability to the process optimisation. In this work, the fitter chromosome is
able to maximise the production of the desired product while minimise the
undesired product. The optimisation function, J, as defined in (10) is applied to
evaluate the fitness of each chromosome. The chromosome with high fitness value
will receive preferential treatment in procreation process later. Ranking selection
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technique is implemented to select the chromosomes into a mating pool so that the
mating pool will not be dominated by those high fitness value chromosomes.

maxTc J ¼ Z
DMcdt � 6:25

Z
DMDdt ð10Þ

During the crossover operation, two chromosomes (parents) are randomly
selected from the mating pool. Then, with a probability of 90 %, both selected
parents will exchange some of their information with each other and create two
new chromosomes (offspring), whereby they have 10 % chance to duplicate into
new generation. The blending (arithmetic) technique is employed in this crossover
operation, as expressed in (11) and (12). The first offspring generated using this
technique is merely the compliment of the second offspring.

x1 ¼ b � P1 þ 1� bð Þ � P2 ð11Þ

x2 ¼ 1� bð Þ � P1 þ b � P2 ð12Þ

where xi is the offspring i, Pi is the parent i, and b is the random number in [0, 1].
The newly created offspring will have a 1 % chance to be mutated in order to

avoid the potential solutions being trapped in the local maxima. During the
mutation, a new chromosome is randomly selected from the entire solution space.
The evolutionary process is stopped when 10th generation is reached, and it will
return the optimal fluid temperature to the plant.

Results and Discussions

In this study, the consumption rate of the limiting reactant (substance A) is limited
to 7.855 kmol so that the optimisation performance of the proposed GA and the
DM can be compared equitably. The configuration of the DM is taken from Cott
and Machietto (1989), which is well tuned for this case. The optimisation per-
formance of GA and DM are shown in Fig. 2a and b, respectively.

In general, one cycle of batch process can be divided into three stages. At the
beginning of the process (first stage), the reactor contents should be heated up to a
certain temperature to enable the chemical reactions to take place. This happens
during 0–10 min when full heating is given to the reactor and before the pro-
duction starts. It can be observed from Fig. 2a-ii that the fluid temperature
determined by GA is not a smooth straight line during this period compared to the
DM, as shown in Fig. 2b-ii. This is because GA is a stochastic search method that
searches the optimal solution through the entire solution space. In some cases, such
as a batch process, there is not only one optimal solution in the solution space, and
hence, it affects the GA output response to have a small fluctuation.

The second stage can be categorised as the stage where the reaction rate
increases rapidly. This is the critical stage due to the huge amount of exothermic
heat being released and causes the reactor temperature to increase rapidly. Hence,
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the cooling system plays an important role in order to avoid the thermal runaway.
The results show that the reaction starts when the reactor temperature is around
60 �C, as shown in Fig. 2a-ii and b-ii at 10 min. During the first part in this stage,
both controllers continue to give full heating to the reactor whereas the cooling is
given during the second part of this stage. For GA, the full heating is given during
10–20 min in order to speed up the production rate using high temperature, as
shown in Fig. 2a, whereas the DM only gives full heating during 10–18 min with
the purpose of increasing the reactor temperature up to the reference point in the
shortest time, as shown in Fig. 2b. It can also be observed from the results that the
waste production started at 20 min, when the temperature is high. In order to limit
the waste production, GA proposes full cooling during 20–30 min. Conversely,
DM tried to maintain the reactor temperature at the desired trajectory, rather than
limit the waste production. Therefore, the waste is produced linearly from 20 min
until the batch ends, as shown in Fig. 2b-i.

In the last stage, the GA seems to be slowly reducing the reactor temperature in
order to limit the waste production, and at the same time, ensuring the production
of desired product is increased, as shown in Fig. 2a.

(i) Production Profile (i) Production Profile

(ii) Temperature Profile (ii) Temperature Profile
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Fig. 2 Performance of genetic algorithm and dual-mode controller

216 M. K. Tan et al.



The overall performance show that the GA is able to harvest 6.258 kmol of
desired product C and 0.796 kmol of undesired by-product D, whereas the DM
only harvests 5.427 kmol of desired product C and 1.214 kmol of undesired by-
product D. The results show that the desired product harvested by the GA is
15.3 % more than the DM, whereas the waste produced by the GA is 34.4 % less
than the DM. Table 1 summaries the performance of the proposed GA and the
conventional DM controller to optimise the batch productivity.

Conclusions

In this chapter, GA is proposed to optimise the raw materials utility for an exo-
thermic batch process without referring to any optimal temperature profile. The
performance of the developed GA is examined using a benchmark exothermic
batch process model. The results show that the proposed method can perform
better than the conventional DM which follows an optimal temperature profile. In
future, the work will be focusing on optimising the GA development in handling
various uncertainties and to improve the robustness of GA.
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Table 1 Performance of the proposed genetic algorithm and the conventional dual-mode con-
troller in optimising the batch productivity

Genetic
algorithm

Dual-mode
controller

Product C (kmol) 6.258 5.427
Undesired product D (kmol) 0.799 1.214
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