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Abstract—This paper aims optimise the exothermic batch 
productivity while minimise the waste production by 
manipulating the fluid temperature and fluid flow rate. During 
the process, a large amount of heat is released rapidly when the 
reactants are mixed together. The exothermic behaviour causes 
the reaction to become unstable and consequently poses safety 
concern to the plant personnel. Commonly, the optimisation of 
the batch process is based on the predetermined optimal 
reference temperature profile. However, this reference profile 
is unable to limit the waste production effectively. Therefore, 
multivariable genetic algorithm (MGA) is proposed in this 
work to optimise the productivity of the process without 
referring to the predetermined reference profile. The results 
show that the MGA is able to harvest more than 80 % of yield 
in handling human error and equipment failure.  

Keywords-batch process; optimisation; genetic algorithm; 
multivariable 

I.  INTRODUCTION  
Batch process has attracted attentions compared to 

continuous process due to its flexibility to handle various 
productions of high value-added product in small-volume, 
such as specialty chemicals, agrochemicals, pharmaceuticals 
and etc. Although the batch process is able to adapt with 
various production types, there is only one common aim 
which is to optimise the production of desired product while 
minimising the waste. Since there is no inflow and outflow 
during the batch process, the raw materials utility of batch 
process is fully relied on the reactor temperature especially 
for the exothermic reaction [1]. The high reactor temperature 
will cause the reaction becomes faster and consequently 
release more exothermic heat. The heat released will further 
increase the reactor temperature, and may cause the reaction 
becomes unstable and hence will lead to thermal runaway if 
it is not well controlled. As a result, the runaway reaction 
will pose safety concern to the plant personnel. 

Nowadays, the global price competition and escalating 
raw materials costs have urged the batch industries to 
consider an effective way of utilising the raw materials [2]. 
Besides, the product quality is regularly impaired by the 
occurrence of undesired by-product [3]. Various optimisation 
methods have been proposed in literature to maximise the 
yield of the batch process.  

In the past, a pre-determined optimal reactor temperature 
profile is used for the process control to maximise the 

productivity [4]. However, it is difficult to measure the 
process variables and to determine the optimal set-point in 
practical due to the nature characteristics of the batch 
process. These will tend to cause the optimal trajectory to 
swift with the time changing.  

To cope with the time-varying process, various 
intelligent algorithms have been considered in chemical 
processes for the optimisation problem. Knowledge-based 
fuzzy logic control has been implemented to settle the 
process ambiguity problem [5]. Optimisation through this 
control requires thorough understanding of the process to set 
the rules and membership functions to obtain desired process 
output. Alternatively, neural network can work in pair with 
fuzzy control to map the process variables relationship via 
sufficient data training [6]. Another way, genetic algorithm 
can work in pair with the fuzzy logic to auto-tune the fuzzy 
logic membership function range [7]. Besides that, other 
intelligent control systems, such as predictive control [9] and 
Q-learning [9], are developed using the black-box model 
concept to tackle the process optimisation problem.  

In this work, multivariable genetic algorithm (MGA) is 
proposed to maximise the production of desired product 
while minimise the production of waste. MGA was 
attempted to determine the optimal jacket inlet fluid 
temperature and the optimal fluid flow rate profile under the 
several case studies. Here is interested in reporting the 
robustness of MGA in handling optimisation problem 
without referring to any reference profile. The hazards 
associated with exothermic reaction are related to the process 
specific factors, such as improper charging, human error, 
equipment failure and parameter variant, are considered in 
the robustness studies.  

II. MODELLING OF BATCH PROCES 
The batch process model used in this paper is based on 

the work of Cott and Machietto [10]. It is assumed that two 
parallel, well-mixed, and irreversible liquid-phase 
exothermic reactions occur in the process. The stoichiometric 
equations of the reactions are shown in the (1) and (2). 

 Reaction 1:   A + B � C,     �H1 = -41840 kJ kmol-1 (1) 

 Reaction 2:   A + C � D,     �H2 = -25105 kJ kmol-1 (2) 
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where A and B are the raw materials, C is the desired 
product, D is the undesired by-product, and �Hi is the 
enthalpy change of Reaction i.  

The plant consists of a reactor with a jacket, as shown in 
Fig. 1. Initially, the raw materials (12 kmol each) are loaded 
into the reactor and the reaction starts when the agitator 
begins to stir the substances. On the other hand, the jacket 
with fluid flowing in it is used to control the reactor 
temperature. 

The proposed algorithm is implemented as the controller 
to optimise the batch productivity by manipulating the jacket 
inlet fluid temperature and the fluid flow rate. The main 
control objective in this work is to maximise the percentage 
of yield at the end of the batch. Fig. 2 illustrates the block 
diagram of batch process optimisation via the MGA. The 
modelling of batch process is explained as follows: 

A. Reaction Rate Modelling 
The reaction rate modelling equations are derived from 

the law of mass action, which basically can be divided into 
two terms. The first term is the temperature-dependent term 
which can be described by Arrhenius equation, whereas the 
second term is the composition-dependent term which is 
proportional to the product of the molar concentration of the 
reactants. Generally, the reaction rate for the Equation 1 and 
Equation 2 can be described in (3) and (4) respectively. 
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where Ei is the activation energy of Reaction i, kB is the 
Boltzmann constant, ki is the frequency factor of Reaction i, 
Mn is the molarity of substance n, Ri is the reaction rate of 
Reaction i, and Tr is the reactor temperature in unit Kelvin.  

B. Component Balance Modelling 
The component balance modelling equations are derived 

from the law of conservation of mass. Since the reaction 
utilises the reactants to create product, the component 
changing rate of reactant will be indicated in a negative-sign, 
conversely the component changing rate of product is 
indicated in a positive-sign. Hence, the instantaneous 
molarity changes of the reactor contents are expressed in (5). 
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where 
•

nM is the molarity changes of substance n.  

C. Energy Balance Modelling 
In general, the reactor and the jacket can be treated as 

two separate closed systems. The energy balance modelling 
for these two closed systems can be derived from the first 
law of thermodynamics. The (6) and (7) describes the energy 
balance in the reactor and jacket respectively, where the (8) 
explains the exothermic heat released during the reaction. 
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where Ar is the surface area of reactor that contacts with 
jacket, C�j and C�r is the heat capacity of the fluid and reactor 
contents respectively, Fj is the jacket inlet fluid flow rate, Mr 
is total molarity of reactor contents, is the heat capacity of 
reactor contents, �j is the fluid density, Qexo is exothermic 
heat released, Tc, Tj, and Tr and are the fluid, jacket and 
reactor temperature respectively in unit degree Celsius, U is 
the heat transfer coefficient between reactor and jacket.  
 

 
Figure 1.  Schematic diagram of batch process. 

 
Figure 2.  Block diagram of batch process optimisation via multivariable 

genetic algorithm. 
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D. Physical Parameters Modelling 
The total reactor contents molarity and heat capacity of 

the reactor contents are described in (9), and (10) 
respectively. The process parameters can be obtained from 
[11].  

  ( )�= nr MM  (9) 
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where C�n is the heat capacity of the substance n. 

III. DEVELOPMENT OF MULTIVARIABLE GENETIC 
ALGORITHM 

MGA is proposed to optimise the batch productivity 
based on the biological evolution theory and Darwin’s 
natural selection concept: “survival of the fittess”. The 
proposed algorithm will search the optimal fluid temperature, 
Tr, and flow rate, Fj, profile heuristically for the process. It is 
assumed that the fluid temperature is bounded in the range of 
10 °C to 120 °C, whereas the fluid flow rate is bounded in 
the range of 0 m3 s–1 to 0.01 m3 s–1. The framework of MGA 
is shown in Fig. 3. The anatomy of the developed MGA is 
discussed as follows: 

A. Chromosome Representation 
In this work, real-number chromosome representation 

technique is applied to encode the potential solutions 
(combination of fluid temperature and flow rate) into a string 
called chromosome because this technique requires 
minimum space storage and faster computing time compared 
to binary chromosome representation. The chromosome 
structure of the developed MGA is shown in Fig. 4. After 
few times of testing, it shows that 50 population size is 
enough for this work. 

B. Fitness Function 
The fitness function evaluates the fitness of each 

chromosome based on the optimisation strategy, as 
expressed in Equation (11). From the equation, it shows that 
the fitter chromosome should have higher production in 
desired product and lower production in the undesired waste.  
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where �1 and �2 are the weight factors. 

C. Selection 
The selection mimics the nature selection concept, which 

is survival of the fittest. In this stage, the fitter chromosomes 
will receive preferential attention to form a mating pool for 
the later reproduction process. This stage emphasises the 
fitter chromosomes are remained in the mating pool at the 
expense of those unfit chromosomes.  

Here, rank selection is used in order to avoid the mating 
pool is dominated by fittest chromosome. This is because of 
if the mating pool is dominated by a certain chromosome, 
then it will affect the exploration of GA to search for the 
suitable solution.  

D. Reproduction 
The reproduction consists of crossover and mutation 

operator, as shown in Fig. 3. In this work, the blending 
technique is used in crossover operator. Two parents are 
randomly selected from the mating pool and create two new 
offspring using the (12) and (13). The probability of 
crossover is set as 0.9. This predefined probability allows the 
both selected parents to have 90 % chances to exchange their 
information with each other, and 10 % chances to remain 
unmodified in the next generation. The main target of the 
selection is to hope that the newly offspring will in turn 
better than the parents.  

]2_)1[(]1_[1_ parentparentoffspring ×−+×= αα  (12) 

]2_)[(]1_)1[(2_ parentparentoffspring ×+×−= αα  (13) 

On the other hand, the mutation operator is responsible to 
keep diversity in the population. It helps to avoid the 
potential solutions to trap in local optimum. However, the 
probability of mutation must be kept low to prevent the loss 
of too many fit chromosome and consequently affect the 
convergence of the solutions. Hence, this work uses 1 % 
mutation rate.    

 
Figure 3.  Framework of mulivaraiable genetic algorithm. 

 

 
Figure 4.  Structure of chromosome. 
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E. Termination Criteria 
The evolution will keep on going, where the new 

generation replace the old generation and breed the third 
generation, until the preset stopping criterion is achieved. 
Here, the termination criterion is set as 10 generations, after 
that the evolutionary process will stop and return the optimal 
fluid temperature and flow rate to the process plant. The 
performance of the MGA is evaluated by the (14). 

 

   (14) 

IV. RESULTS AND DISCUSSIONS 
The model of the exothermic batch process is modelled 

and simulation in MATLAB m-file. The process simulation 
programme is run at the rate of 1 sec, whereas the MGA 
programme is sampled at the rate of 60 sec. The proposed 
algorithm is tested under four cases, named as nominal case, 
improper charging, temporary insufficient cooling and 
parameter variant.  

The improper charging simulates the factor which 
involves the abnormalities of the raw material concentration. 
This factor is caused by the human error [12]. In this case, it 
is assumed that the initial concentration of the raw materials 
is 16 kmol. The temporary insufficient cooling simulates the 
partially blockage in the inlet fluid piping which is caused by 
the equipment failure [12]. In this case, it is assumed that the 
fluid flow rate becomes 0.001 m3 s–1 during 18 min to 
22 min. The last case simulates the parameter variant 
condition. This work assumes that the frequency factors and 
the activation energy in (3) and (4) are ± 3 % from the 
nominal value. Other than the above mentioned, random 
time delay and temperature measurement errors are 
introduced in all the cases, except the nominal case. In this 
work, the random time delay is assumed in the range of 5 sec 
to 15 sec, whereas the measured temperature will have a 
precision of ± 0.5 °C.  

The performance of the MGA in nominal case is shown 
in Fig. 5. At the beginning of the process, the MGA gives a 
preheating to the reactor in order to accelerate the reaction. 
During 18 min to 21 min, the MGA gives a full cooling to 
compensate the exothermic heat released during the process. 
After 20 min, the MGA tries to maintain the reactor 
temperature at around 65 °C in order to limit the waste 
production. The fluctuation in the output responses of MGA, 
as shown in Fig. 5(a), is caused by the inherent heuristic 
search characteristic of MGA because sometimes there is not 
only one optimal solution can be found in solution space.  

The performance of the proposed MGA in handling the 
improper charged condition is shown in Fig. 6. According to 
the Law of Mass Action, increase in the reactant 
concentration will increase the reaction rate and hence 
increase the exothermic heat released as well. Since the 
exothermic heat released is larger than the nominal case, the 
full cooling period given in this case should be longer than  
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(a) Control actions of multivariable genetic alogrithm 
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Figure 5.  Performance of multivariable genetic algorithm in nominal case. 

46



the nominal case. Therefore, it can be noticed from the 
Fig. 6(a) that the MGA gives a full cooling from 18 min to 
30 min, which is 8 min longer compared to the nominal case, 
in order to compensate the high amount of heat released 
during the reaction. The Fig. 6(b) shows that the total amount 
of desired product C obtained at the end of the batch is 
5.493 kmol, or equivalent to 48.1 % higher than the nominal 
case. This is because of the high amount of initial charged 
will increase the probability of the successful reaction hence 
more product is produced. Again, in order to limit the waste 
production, the MGA will maintain the fluid temperature at 
around 60 °C. 

Fig. 7 shows the performance of proposed MGA in 
handling the sudden insufficient cooling condition during 
18 min to 21 min. This period is a critical period to have the 
cooling system because the exothermic heat is released 
rapidly during this period, as discussed in previous. 
Therefore, this test is to examine the robustness of MGA to 
control the process once the fault is over. Since the jacket  
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(a) Control actions of multivariable genetic alogrithm 
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Figure 6.  Performance of multivariable genetic algorithm in charging 
failure condition. 

 inlet fluid is partially blocked, it will limit the flow rate of 
the fluid hence lead to the insufficient cooling circumstance. 
As a result, the heat released will increase the reactor 
temperature and cause the more waste to produce. After the 
fault is over, the MGA took 9 min (until 30 min) to limit the 
waste production by bringing down the reactor temperature. 
At the end of the batch, as shown in Fig. 7(b), the total waste 
produced is 0.4519 kmol, or equivalent 371.27 % higher than 
the nominal case.  

Although the proposed MGA is performed well in 
handling the human fault and equipment failure 
circumstances, it does not be capable to deal with the 
parameter variant condition, as shown in Fig. 8. The 
Fig. 8(b) shows that the MGA is unable to limit the waste 
production efficiently because the proposed MGA is using 
the predetermined and non-adaptable model in the fitness 
function to determine the suitability of the potential 
solutions. The Table I summarises the productivity of the 
proposed MGA in all the case studies. 
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Figure 8.  Performance of multivariable genetic algorithm in parameter 
variant condition. 

TABLE I.  PROCESS MODELLING PARAMETERS 

Case Product C 
(kmol) 

Undesired Product D 
(kmol) 

Yield 
(%) 

Nominal 3.709 0.09589 95.08 
Improper charging 5.493 0.197 93.31 

Pump failure 4.679 0.4519 83.81 
Parameter variant 4.471 3.057 25.48 

V. CONCLUSION 
In this study, a benchmark of exothermic batch process 

model has been as the case study. Multivariable genetic 
algorithm (MGA) is proposed to optimise the productivity of 
an exothermic batch process by manipulating fluid 
temperature and fluid flow rate. The optimisation aim of the 
developed algorithm is to maximise the production of the 
desired product while minimise the production of the 
undesired by-product. The simulation results show that the 
proposed MGA is able to optimise the process with the yield 

more than 80 % in handling human error and equipment 
failure condition. However, the proposed method is unable to 
cope with the parameter variant circumstance due to the 
predetermined and non-adaptable model in fitness function is 
used to determine the suitability of the potential solutions. In 
future, this research will be focusing on improve the MGA 
by adding the adaptive feature into its fitness function in 
order to improve its flexibility to cope with parameter variant 
condition.  
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